\(\int \frac {1}{(a+b \arcsin (c x))^2} \, dx\) [165]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 10, antiderivative size = 86 \[ \int \frac {1}{(a+b \arcsin (c x))^2} \, dx=-\frac {\sqrt {1-c^2 x^2}}{b c (a+b \arcsin (c x))}+\frac {\operatorname {CosIntegral}\left (\frac {a+b \arcsin (c x)}{b}\right ) \sin \left (\frac {a}{b}\right )}{b^2 c}-\frac {\cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \arcsin (c x)}{b}\right )}{b^2 c} \]

[Out]

-cos(a/b)*Si((a+b*arcsin(c*x))/b)/b^2/c+Ci((a+b*arcsin(c*x))/b)*sin(a/b)/b^2/c-(-c^2*x^2+1)^(1/2)/b/c/(a+b*arc
sin(c*x))

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {4717, 4809, 3384, 3380, 3383} \[ \int \frac {1}{(a+b \arcsin (c x))^2} \, dx=\frac {\sin \left (\frac {a}{b}\right ) \operatorname {CosIntegral}\left (\frac {a+b \arcsin (c x)}{b}\right )}{b^2 c}-\frac {\cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \arcsin (c x)}{b}\right )}{b^2 c}-\frac {\sqrt {1-c^2 x^2}}{b c (a+b \arcsin (c x))} \]

[In]

Int[(a + b*ArcSin[c*x])^(-2),x]

[Out]

-(Sqrt[1 - c^2*x^2]/(b*c*(a + b*ArcSin[c*x]))) + (CosIntegral[(a + b*ArcSin[c*x])/b]*Sin[a/b])/(b^2*c) - (Cos[
a/b]*SinIntegral[(a + b*ArcSin[c*x])/b])/(b^2*c)

Rule 3380

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3383

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 4717

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Sqrt[1 - c^2*x^2]*((a + b*ArcSin[c*x])^(n + 1)/
(b*c*(n + 1))), x] + Dist[c/(b*(n + 1)), Int[x*((a + b*ArcSin[c*x])^(n + 1)/Sqrt[1 - c^2*x^2]), x], x] /; Free
Q[{a, b, c}, x] && LtQ[n, -1]

Rule 4809

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*c
^(m + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Subst[Int[x^n*Sin[-a/b + x/b]^m*Cos[-a/b + x/b]^(2*p + 1), x],
 x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p + 2, 0] && IGtQ[m,
 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sqrt {1-c^2 x^2}}{b c (a+b \arcsin (c x))}-\frac {c \int \frac {x}{\sqrt {1-c^2 x^2} (a+b \arcsin (c x))} \, dx}{b} \\ & = -\frac {\sqrt {1-c^2 x^2}}{b c (a+b \arcsin (c x))}+\frac {\text {Subst}\left (\int \frac {\sin \left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \arcsin (c x)\right )}{b^2 c} \\ & = -\frac {\sqrt {1-c^2 x^2}}{b c (a+b \arcsin (c x))}-\frac {\cos \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \arcsin (c x)\right )}{b^2 c}+\frac {\sin \left (\frac {a}{b}\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {x}{b}\right )}{x} \, dx,x,a+b \arcsin (c x)\right )}{b^2 c} \\ & = -\frac {\sqrt {1-c^2 x^2}}{b c (a+b \arcsin (c x))}+\frac {\operatorname {CosIntegral}\left (\frac {a+b \arcsin (c x)}{b}\right ) \sin \left (\frac {a}{b}\right )}{b^2 c}-\frac {\cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \arcsin (c x)}{b}\right )}{b^2 c} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.84 \[ \int \frac {1}{(a+b \arcsin (c x))^2} \, dx=\frac {-\frac {b \sqrt {1-c^2 x^2}}{a+b \arcsin (c x)}+\operatorname {CosIntegral}\left (\frac {a}{b}+\arcsin (c x)\right ) \sin \left (\frac {a}{b}\right )-\cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\arcsin (c x)\right )}{b^2 c} \]

[In]

Integrate[(a + b*ArcSin[c*x])^(-2),x]

[Out]

(-((b*Sqrt[1 - c^2*x^2])/(a + b*ArcSin[c*x])) + CosIntegral[a/b + ArcSin[c*x]]*Sin[a/b] - Cos[a/b]*SinIntegral
[a/b + ArcSin[c*x]])/(b^2*c)

Maple [A] (verified)

Time = 0.04 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.88

method result size
derivativedivides \(\frac {-\frac {\sqrt {-c^{2} x^{2}+1}}{\left (a +b \arcsin \left (c x \right )\right ) b}-\frac {\operatorname {Si}\left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \cos \left (\frac {a}{b}\right )-\operatorname {Ci}\left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \sin \left (\frac {a}{b}\right )}{b^{2}}}{c}\) \(76\)
default \(\frac {-\frac {\sqrt {-c^{2} x^{2}+1}}{\left (a +b \arcsin \left (c x \right )\right ) b}-\frac {\operatorname {Si}\left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \cos \left (\frac {a}{b}\right )-\operatorname {Ci}\left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \sin \left (\frac {a}{b}\right )}{b^{2}}}{c}\) \(76\)

[In]

int(1/(a+b*arcsin(c*x))^2,x,method=_RETURNVERBOSE)

[Out]

1/c*(-(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))/b-(Si(arcsin(c*x)+a/b)*cos(a/b)-Ci(arcsin(c*x)+a/b)*sin(a/b))/b^2)

Fricas [F]

\[ \int \frac {1}{(a+b \arcsin (c x))^2} \, dx=\int { \frac {1}{{\left (b \arcsin \left (c x\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(1/(a+b*arcsin(c*x))^2,x, algorithm="fricas")

[Out]

integral(1/(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2), x)

Sympy [F]

\[ \int \frac {1}{(a+b \arcsin (c x))^2} \, dx=\int \frac {1}{\left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}\, dx \]

[In]

integrate(1/(a+b*asin(c*x))**2,x)

[Out]

Integral((a + b*asin(c*x))**(-2), x)

Maxima [F]

\[ \int \frac {1}{(a+b \arcsin (c x))^2} \, dx=\int { \frac {1}{{\left (b \arcsin \left (c x\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(1/(a+b*arcsin(c*x))^2,x, algorithm="maxima")

[Out]

((b^2*c^2*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*c^2)*integrate(sqrt(c*x + 1)*sqrt(-c*x + 1)*x/(a*b*
c^2*x^2 - a*b + (b^2*c^2*x^2 - b^2)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))), x) - sqrt(c*x + 1)*sqrt(-c*x
+ 1))/(b^2*c*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*c)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 192 vs. \(2 (84) = 168\).

Time = 0.28 (sec) , antiderivative size = 192, normalized size of antiderivative = 2.23 \[ \int \frac {1}{(a+b \arcsin (c x))^2} \, dx=\frac {b \arcsin \left (c x\right ) \operatorname {Ci}\left (\frac {a}{b} + \arcsin \left (c x\right )\right ) \sin \left (\frac {a}{b}\right )}{b^{3} c \arcsin \left (c x\right ) + a b^{2} c} - \frac {b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {a}{b} + \arcsin \left (c x\right )\right )}{b^{3} c \arcsin \left (c x\right ) + a b^{2} c} + \frac {a \operatorname {Ci}\left (\frac {a}{b} + \arcsin \left (c x\right )\right ) \sin \left (\frac {a}{b}\right )}{b^{3} c \arcsin \left (c x\right ) + a b^{2} c} - \frac {a \cos \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {a}{b} + \arcsin \left (c x\right )\right )}{b^{3} c \arcsin \left (c x\right ) + a b^{2} c} - \frac {\sqrt {-c^{2} x^{2} + 1} b}{b^{3} c \arcsin \left (c x\right ) + a b^{2} c} \]

[In]

integrate(1/(a+b*arcsin(c*x))^2,x, algorithm="giac")

[Out]

b*arcsin(c*x)*cos_integral(a/b + arcsin(c*x))*sin(a/b)/(b^3*c*arcsin(c*x) + a*b^2*c) - b*arcsin(c*x)*cos(a/b)*
sin_integral(a/b + arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c) + a*cos_integral(a/b + arcsin(c*x))*sin(a/b)/(b^
3*c*arcsin(c*x) + a*b^2*c) - a*cos(a/b)*sin_integral(a/b + arcsin(c*x))/(b^3*c*arcsin(c*x) + a*b^2*c) - sqrt(-
c^2*x^2 + 1)*b/(b^3*c*arcsin(c*x) + a*b^2*c)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \arcsin (c x))^2} \, dx=\int \frac {1}{{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2} \,d x \]

[In]

int(1/(a + b*asin(c*x))^2,x)

[Out]

int(1/(a + b*asin(c*x))^2, x)